Innovative technique for large septal perforation repair and radiological evaluation

S. MOCELLA1, F. MUIA2, P.G. GIACOMINI3, D. BERTOSSI4, E. RESIDORI5, S. SGROI6
1 ENT Department, East Garda Bussolengo (VR), Italy; 2 Surgery Staff Asl TO5 Chieri (TO), Italy; 3 Tor Vergata University Rome, Italy; 4 Maxillo-Facial Department, University of Verona, Italy; 5 Radiological Department, East Garda Bussolengo (VR), Italy; 6 Department of Radiology, Casa di cura Pederzoli, Peschiera (VR), Italy

SUMMARY
Perforation of the nasal septum may have multiple causes: traumatic, iatrogenic, infectious, degenerative, abuse of vasoconstrictors, abuse of cocaine and more recently chemotherapy agents. Perforations are also classified according to their size and type of cartilaginous or osteocartilaginous deficit, as well as location (front, middle and rear). Many surgical techniques have been proposed to repair the perforation, although the results are often unsatisfactory for perforations of small and medium size; in large perforations permanent obliteration of the defect cannot always be ensured. It is often necessary to use tissues from inside the nasal turbinates or cartilage from other donor sites such as the ear or rib, and various techniques are discussed in light of the recent literature. The perforations observed in the last eight years and surgical approaches performed in open or closed approaches are taken into account. The authors propose a new technique that has been used with success in many types of septal perforation regardless of aetiology, and in particular large perforations, which allows for the use of the osteocartilaginous donor site as a hump. It is also useful in reductive rhinoseptoplasty, which targets selection to easily obtain mucopericondral flaps with an extramucosal technique and to obtain also an aesthetic improvement.

KEY WORDS: Nasal septal perforation • Reductive rhinoseptoplasty • Ostecartilagineous hump • Diagnostic radiological nasal work-up

Introduction
Closure of nasal perforation is one of the most fascinating and exciting of all procedures in nasal reconstructive surgery. It is a challenge for both the surgeon and patient, with the primary goal of restoring aesthetic aspects and recovering anatomical and functional integrity in the same procedure. Surgical success is based on a precise definition of aetiology; location and the method employed during the intervention along with particular attention to pre- and post-operative care. The authors report their long-standing experience with the definition and treatment of perforations of the nasal septum, which in reality is not an infrequent pathology.
Aetiology and clinical features

The causes of nasal perforation may be local or systemic; in addition, various systemic illnesses may be responsible for the pathology, but there are limited data available regarding the frequency of the different causes of nasal septal perforation. A broad investigation in a Swedish population revealed a prevalence of septal perforation of 0.9%. Aetiological and clinical features

Table I. Aetiology of nasal septal perforations.

<table>
<thead>
<tr>
<th>Traumatic causes</th>
<th>Inflammatory or infectious causes</th>
<th>Neoplastic causes</th>
<th>Other causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous surgery</td>
<td>ACE ></td>
<td>Carcinoma</td>
<td>Inhaled substances (e.g., cocaine, topical corticosteroids, long-term oxymetazoline or phenylephrine use)</td>
</tr>
<tr>
<td>Cauterization or embolization for epistaxis</td>
<td>ANCA ></td>
<td>T-cell lymphomas</td>
<td>Chronic acid fumes</td>
</tr>
<tr>
<td>Nasal packing</td>
<td></td>
<td>HISTOPATOLOGY</td>
<td>Renal failure</td>
</tr>
<tr>
<td>Nasogastric tube placement</td>
<td></td>
<td></td>
<td>Use of targeted/biologic therapies in the treatment of malignant and non-malignant diseases (bevacizumab)</td>
</tr>
<tr>
<td>Septal haematoma from blunt trauma</td>
<td></td>
<td></td>
<td>Use of methotrexate or docetaxel in the treatment of malignant disease</td>
</tr>
<tr>
<td>Battery or other foreign body in nose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic nasal cannula use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulent airflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classical and diagnostic endoscopic features

Septal perforations are classified according to site and topography: cartilaginous, osteocartilaginous or intermediate, bone or posterior; according to size: small (< 1 cm in diameter), medium (1-2 cm) and large (> 2 cm). Often, the size of cartilage or bone perforation is greater than that of the mucosa, and therefore instrumental techniques for high-precision measurement of the perforation have been proposed.

Physical examination of the nose begins with an evaluation of the external nose. Large perforations may result in loss of support to the dorsum of the nose and subsequent saddle nose deformity with occasional lateral deviation of the anterior part of the pyramid.

Table II. Suggestions and precautions in nasal septal perforations (from Batiangi 2012).

- Discontinue the use of aspirin or non-steroidal anti-inflammatory drugs.
- Decrease digital nasal trauma. Parents may want to place mittens on their young children’s hands at night.
- Minimize nasal trauma during the insertion of nasogastric tubes by (1) decongesting the nose with oxymetazoline or phenylephrine prior to nasogastric tube insertion, (2) inserting the nasogastric tube along the floor of the nose parallel to the hard palate and perpendicular to the plane of the face, and (3) lubricating the tip of the nasogastric tube.
- When cauterizing the nasal septum for epistaxis, avoid cauterizing both sides simultaneously.
- Stop cocaine use.
- Stop or minimize use of topical nasal decongestants.
- Use nasal emollients (especially before bedtime).
- Run a humidifier in the bedroom. Frequently use nasal saline sprays.
- Use nasal emollients (especially before bedtime).
- Decrease digital nasal trauma. Parents may want to place mittens on their young children’s hands at night.
- Discontinue the use of aspirin or non-steroidal anti-inflammatory drugs.
Anterior endoscopic rhinoscopy is essential in initial examination of the patient, and may reveal the configuration of the perforation, the presence of crusting and irregularities of mucosal structure (Figs. 1, 2). Topical nasal decongestants may be utilized for intranasal inspection of the entire septum. Nasal endoscopy provides more information on the evaluation of the entire septum. Palpation of the septum with a cotton-tipped applicator provides valuable information regarding the integrity of the quadrangular cartilage in the remainder of the septum. Some clinical cases are shown in the Figures 3-6.

Diagnostic work-up

In diagnostic work up of septal perforation, several detailed laboratory investigations can be performed that are especially useful to detect medical causes of septal perforations.

Fig. 1. Septal perforation of one cm in a cocaine user. It is possible to note the circular configuration, infection and the ischaemic aspect of mucosa near the margin of the lesion.

Fig. 2. Patient with a large septal perforation due to chronic acid exposition. The superior part of perforation is visible near the middle turbinate showing important vascularisation near the edges.

Surgical procedures

Many surgical procedures have been proposed to repair the defect, either by endonasal approaches using mucoperichondrial or combined flaps with interposition of the graft using septal cartilage, uncinate process, middle turbinate, auricular or costal cartilage and temporal fascia, also utilizing a backwards extraction-reposition technique of the quadrangular cartilage or using other non-autologous tissues or synthetic materials.

In large perforations, four authors have suggested the use of labial and oral flaps. The open approach is considered more likely to dominate the edges of the perforation and to ensure routine surgical dissection and reconstruction of the defect. However, it is often not possible to obtain flaps that are large enough to cover the defect. To overcome this, some authors have suggested combining reductive rhinoseptoplasty to use the excess of mucosa that arises as a fabric to repair the septal perforation. Other authors have also proposed the use of expanders positioned under the mucopericondrium to achieve the same result.

Radiological work-up

In many of our surgical cases, radiological specific work-up and elaboration techniques of imaging was performed before and after surgery for septal perforation to obtain as much information as possible regarding nasal structure and framework; the method was applied to identify the loss of bone and mucosal layers, and to quantify and obtain exact measures of the defect to help in planning reconstruction. Some anatomic structures of the paranasal sinuses, and especially nasal septum which is of main interest in our cases, are not optimally visualized by computed tomography (CT) and 2D MRI (Magnetic Resonance Imaging) with standard image reconstruction in the axial and coronal planes.

Elaboration of CT scans was performed, in addition to virtual 3D endoscopy (Fig. 8) using a work station furnished by the CT or MRI manufacturer. Multidetector CT scanners with 16 detector rows (or more) allow the acquisition of volumetric data sets that can be electronically reconstructed in any plane. Recent 1.5T (or 3.0T) MRI scanners equipped with new 3D acquisition sequences al-
low the acquisition of volumetric data sets as well, with the advantage (compared to CT) of better visualization of soft tissues with no radiation exposure. These techniques give radiologists and surgeons the opportunity to visualize anatomic structures in greater detail and may help increase diagnostic accuracy and therapeutic planning of diseases of the paranasal sinuses and nasal septum.

Multidetector CT

CT examination of the paranasal sinuses is performed at our institution using a multidetector scanner (Sensation 16; Siemens, Erlangen, Germany). The scanner is equipped with 16 rows of detectors. Scanning is performed in the standard axial plane with a helical technique (120 kV, 100 Eff. mAs, pitch of 0.55, rotation time of 0.75 second, section thickness of 0.75 mm, and a 512 × 512 matrix). The subject’s head is placed in a neutral position, without chin tilt. The image data set is reconstructed with an individual voxel size of 0.75 × 0.75 × 0.75 mm.

The images included in the present article were reconstructed at a standard workstation (Wizard; Siemens) and at a standard PACS Workstation (Synapse, Fujifilm Medical Systems, equipped with Voxar 3D 6.3 software). The time required for multiplanar reconstruction of the CT image data set was about 3-5 min per reconstruction.

Purpose

Each reconstruction was tailored to better depict the structure of clinical interest, namely the nasal septum and paranasal sinuses. The anatomic location and orientation of the structures to be evaluated were confirmed on images in three orthogonal (axial, coronal, and sagittal) planes of

Fig. 3. Patient with a small perforation due to previous surgery with the contemporary presence of nasal atrophy and secretions.

Fig. 4. The perforation's size is detected during endoscopic examination.

Fig. 5. Patient with a septal perforation of almost 2 cm with irregularities of margins due to previous iatrogenic surgery.

Fig. 6. Patient with perforation of septum and destruction of the columella.
reference. Moreover, 3D VRT (volume rendering technique) and animated three3D reformatting images were obtained to achieve the best overview of morphology and local anatomy, integrating 2D information, thus providing an excellent preoperative “road map” and planning tool. Oblique and curved planes of section were defined to optimally depict any given structure (Figs. 9-10).

Surgical technique
According to Foda 1999,157, the major goal in septal perforation surgery is not only to repair the perforation, but also to restore normal form and function to the nose. The increased surgical exposure provided by an open approach not only facilitates repair of large and posterior perforations, but also allows contemporary rhinoplasty. On the basis of these observations, in a large series of our patients (14 patients of the 87 observed over 8 years), reductive rhinoseptoplasty was performed with the principal aim to obtain more tissue in the same operatory field and to have the possibility of increasing the transfer and movement of flaps to cover the defect.

In 1995, Kridel affirmed that the possibility of correcting septal perforation and nasal external deformities in a unique set presents technical difficulties, and only challenging cases in which perforation is small and a dorsal hump can be removed are appropriate for synchronous correction.

In our opinion, due to the general features of the perforation, an oval form (Fig. 11) with a cranio-caudal diameter is generally less important than the antero-posterior one. It is thus more useful to reduce the perforation with contemporary reductive rhinoseptoplasty.

In the cases we present herein, an open external approach was adopted in the majority of cases with an extramucosal internal technique and removal of the hump; extracorporeal treatment of the septum was performed with modelling and reconstruction using the

Fig. 7. Proposed algorithm modified by Rami K. Batniji 97 for a systematic evaluation of newly diagnosed septal perforation with the surgical indications in red and diagnostic work-up in yellow.
hump crushed and the covering of the obtained graft with fascia of compatible biological origin (pericardial fascia) or membrane obtained by heteroeologous auricular biocompatible cartilage. If the hole was completely covered with the graft, we employed the fascia (Figs. 12-13). Otherwise, we utilized the cartilaginous membrane which is more consistent, and in our opinion provides a higher possibility of success.

In some cases from our experience, we used an endonasal approach with a reductive rhinoseptoplasty. In these cases, the septal was reassembled with an extracorporeal technique and repositioned inside between the two sutured layers (Fig. 14) of mucosa.

After the initial experience, an open approach was routinely performed to obtain better exposition. In the sequence of Figures 15-20 is presented a clinical case with a large posterior perforation repaired and the radiological work-up.
Conclusions

The main objective in management of septal perforations is to restore the nasal framework and to close the defect to obtain complete healing of mucosa, and consequently less crusting and bleeding, which in some cases may persist despite the surgical effort.

Our aim was to repair the largest perforations by mainly utilizing the tissue present in the nasal field, and for this reason we began employing the hump to reassemble the septal defect; it is true that on occasion only transfer of mucosa and interpositioning of fascia may be successful, but for large defects we prefer a more consistent tissue to create more favourable healing and migration of epithelium. As affirmed by Foda [157], the disadvantages of surgery are that the difficulties in effectively closing a septal perforation are directly proportional to the size of perforation. Nonetheless, we also believe that the relative dimension of the external nose is important, regardless of the presence or absence of the hump that could be used for reconstruction.

For better surgical planning a precise diagnostic work up with laboratory exams is useful if the perforation may have a medical origin or if cocaine use is suspected or confirmed; regarding radiological work-up, we have long-standing collaborations with radiologists that have provided excellent results. Additional applications and developments could further improve both results and future simulations.

Repair of septal perforation is now a challenging lengthy procedure, and only few expert surgeons have dedicated themselves to such procedures. To better understand the actual efficacy of these procedures, more experienced surgeons should share their results to improve knowledge and to obtain larger study groups, with particular attention to the use of biological material utilized, which will increase the safety, efficacy and ease of the procedures for repair of septal perforations.

Figs. 12, 13. The hump removed is placed in the place of perforation during extracorporeal septoplasty, the septum is reassembled and modelled and covered with fascia.

Fig. 14. The septum is inserted in the middle during an open approach and fixed at the spine perichondrium and dorsal vault.
Figs. 15, 16. Endoscopic view of an iatrogenic septal perforation of a perforation larger than 3 cm, and a normal sagittal view with measures of perforation.

Figs. 17, 18. Elaborated CT reconstruction with the method described in the text, and post-operative reconstruction with repair of the perforation. The biological material utilized in reconstruction and repair of the perforation is visible.

Figs. 19, 20. Pre- and post-operative anterior rhinoscopy of the same patient in the previous figures.
References

Innovative technique for large septal perforation repair and radiological evaluation

Isaksson M, Bruze M, Wihl JA. Contact allergy to budesonide and perforation of the nasal septum. Contact Dermatitis 1997;37:133.

Innovative technique for large septal perforation repair and radiological evaluation

Received: December 15, 2012 - Accepted: January 7, 2013

Address for correspondence: Stelio Mocella, via 4 Novembre 28, 37126 Verona, Italy. E-mail: mocellastelio@gmail.com, studiomo-cella@gmail.com